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Quasi-equilibrium dynamics of shear-stratified
turbulence in a model tropospheric jet

By K. L. TSE, A. MAHALOV, B. NICOLAENKO
AND H. J. S. FERNANDO

Environmental Fluid Dynamics Program, Arizona State University, Tempe, AZ 85287-9809, USA

(Received 17 September 2001 and in revised form 17 June 2003)

Direct numerical simulations are performed to study the dynamics of an
inhomogeneous stratified shear flow that models an atmospheric jet centred at the
tropopause across which the density stratification is non-uniform. Small to moderate
background stratifications are selected, and simulations are conducted for a range
of Reynolds and Froude numbers. A spectral domain decomposition method that
is particularly suitable for simulations of non-uniformly stratified shear flows is
developed to simulate the desired turbulent jet, and quasi-equilibrium flow fields
are obtained by long-time integration of governing equations. The structures of the
mean flow and turbulence fields are calculated, which are interpreted using relevant
length scales (Ozmidov, buoyancy, shear, Ellison) and Richardson number profiles.
The ratios of the Ellison to buoyancy scales are much smaller than unity at the
jet core and approach unity at the edges, confirming that mechanical turbulence
prevails in the jet core, while nonlinear waves and stratification effects are dominating
at the jet edges. The jet core is found to support sustained mechanical (active)
turbulence, outside which lay a region of patchy turbulence and nonlinear gravity
wave activity characterized by spatially decaying velocity fluctuations and strong
temperature fluctuations. Detailed energy budgets show how energy is partitioned
within the flow, including the transport of energy from the jet to its immediate
vicinity by nonlinear gravity waves.

1. Introduction
In environmental flows situations where shear and stratification coexist are

ubiquitous, and many attempts have been made to understand the generation and
evolution of turbulence in stratified shear flows. In particular, it has long been
recognized that shear is a major source of mixing in geophysical flows, in that it
not only produces turbulence via interaction with Reynolds stresses but also directly
causes mixing at stratified interfaces by exciting Kelvin–Helmholtz (K–H) instabilities.
The effect of stable stratification is to limit the vertical length scales of the turbulence
and hence the vertical length scales over which mixing can occur. The usual feature of
unstratified turbulence of having a single or a few length scales is not a characteristic
of stratified turbulence, especially when the shear and buoyancy forcing have different
length scales and when there is significant wave dynamics.

Early studies of shear-stratified turbulence have been made using laboratory
simulations (Webster 1964; Rohr et al. 1988), but with increasing computer power,
direct numerical simulations (DNS) and large-eddy simulations (LES) have become
viable tools. There are many studies using numerical approaches, most of them using
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Figure 1. (a) An example of a jet stream profile from Bedard et al. (1986) (reproduced with
permission from the American Meteorological Society). The dotted line is obtained from
observation while the solid line is a numerical fit. (b) The normalized velocity profiles Ub

for the basic state of the present computations. The vertical axis is zα where α = 16, and
−8.0 � zα � 8.0. Only the middle portion of the computational box is shown here.
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Figure 2. Brunt–Väisälä frequency profile recorded in the atmosphere by Beland (1993)
with balloon measurements.

DNS (Gerz, Schumann & Elghobashi 1989; Holt, Koseff & Ferziger 1992; Schumann
& Gerz 1995; Hunt & Galmiche 2001; Galmiche, Thual & Bonneton 2002; Jacobitz,
Sarkar & Van Atta 1997; Riley, Metcalfe & Weissman 1981; Shih et al. 2000; Riley
2001) and others using LES (Kaltenbach, Gerz & Schumann 1994; Schumann 1996;
Carnevale, Briscoline & Orlandi 2001). There are also many investigations based on
observational data, e.g. Keyser & Shapiro 1985; Bedard, Canavero & Einaudi 1986;
Hunt, Kaimal & Gaynor 1985; Nastrom & Gage 1985; Nastrom, Gage & Ecklund
1986; Eaton & Nastrom 1998, Pardyjak, Monti & Fernando 2002.

The focus of the present study is to investigate turbulence in a non-homogeneous
stratified shear flow where the velocity profile takes the form of a jet (cf. figure 1). In
the upper troposphere and lower stratosphere localized regions of three-dimensional
turbulence arise through shear instability or through breaking of inertia–gravity waves.
Upper-level atmospheric jet regions are also strongly influenced by stable background
stratification (cf. figure 2). The flow belongs to the class of non-uniformly stratified
(with a doubling of buoyancy frequency across the jet) shear flows, whose turbulence
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Figure 3. (a) An example of a gradient Richardson number profile corresponding to
figure 1(a), measured by Bedard et al. (1986) (reproduced with permission from the American
Meteorological Society). (b) Gradient Richardson number profiles at quasi-equilibrium from
the numerical simulations for cases 4, 5 (2562 × 512 resolution) and case 6 (5122 × 1024
resolution) (see table 1).

characteristics are not well-understood. We set up our model based on jet streams
encountered in the Earth’s atmosphere at the tropopause. This region corresponds to
the transition between the troposphere and the stratosphere which is observed at an
altitude of about 10 to 15 km depending on the latitude. We consider a non-uniformly
stratified jet centred at the vertical coordinate z = 0. The flow consists of a jet core
surrounded by two shear layers; the layer above has a negative shear and a stronger
temperature gradient, while the layer below has a positive shear and presents a weaker
temperature gradient, with the buoyancy (Brunt–Väisälä) frequency being reduced by
a factor of two. This configuration is typical of the jet streams in the tropopause (cf.
figures 1 and 2).

The gradient Richardson number, which quantifies the ratio of stratification to shear
effects, is low within the jet core (except at the centre) and velocity fluctuations are
maximal there, thus providing sustained turbulence (cf. figures 3a and 3b). It increases
towards the jet edges where the effect of stratification tends to reduce turbulence with
the shear length scale exceeding the buoyancy outer scale. Tropopausal turbulence,
driven by shear instabilities on either side of the jet axis, results in mean stratification
with a notch in the Brunt–Väisälä frequency profile, a configuration favouring gravity
wave emission (Nastrom & Eaton 1997). The flow in the vicinity of the edges of
the jet produces nonlinear gravity waves, which travel into the ambient stratification
and break (Sutherland & Peltier 1995). Regions far from the jet edges have weaker
velocity fluctuations than in the core, and hence meagre turbulent mixing, although
potential energy and temperature fluctuations therein remain strong due to internal
waves. The above scenarios are in agreement with aircraft observations of Bedard
et al. (1986). The regions of intermittent turbulence are signified by low values of
gradient Richardson number Rig , typically Rig < 0.25 (Kaltenbach et al. 1994).

In this study, our focus is on the dynamics and vertical variability of scales that are
poorly resolved in mesoscale meteorological codes such as MM5 and WRF (Grell,
Dudhia & Stauffer 1995). Such knowledge is important not only for parameterization
and modelling of tropopausal turbulence and associated mixing in mesoscale models
under stably stratified conditions, but also for determining refractive index structure
functions pertinent to electromagnetic wave propagation across the tropopause
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(Beland 1993; Eaton & Nastrom 1998; Nastrom et al. 1986; Dalaudier et al. 1994).
Vertical scales controlling the size of ‘sheets’ in the atmospheric temperature field
have been directly found by the analysis of field measurements; the main dynamical
properties of such layers, whether strongly mixed or ‘calm’, can be characterized by
the gradient Richardson number and various outer scales of turbulence (Alisse &
Sidi 2000). We investigate how the dynamics and dominant physical processes in the
stratified jet are reflected in various length scales. In particular, we study vertical
variability of outer scales and their dependence on the background synoptic-scale
jet stream and the background Brunt–Väisälä profile across the tropopause. Beyond
a sufficient threshold of resolution (especially in the vertical direction) our DNS
simulations demonstrate saturation with increased numerical resolution of the vertical
variability curves for ratios of various outer scales of turbulence. These resolution-
independent ratios are an effective gauge of the variability of non-homogeneous
turbulence in a non-uniformly stratified tropopause jet.

Only a very few studies have been reported on three-dimensional high-resolution
numerical simulations that employ realistic models of the non-uniformly stratified
tropopause jet. Sutherland & Peltier (1995) and Smyth & Moum (2002) implemented
a jet-like velocity profile as the initial condition; the Brunt–Väisälä profiles used in
their model were also doubled from the lower to the upper domains. However, their
simulations are only two-dimensional and the jet profiles tend to be smeared as there
is no sustained momentum source in their model, which caused the shear to steadily
decrease. In the atmosphere, on the other hand, the jet is maintained in a quasi-
steady state by the synoptic-scale forcing, which needs to be considered in modelling.
It should be noted that there are many numerical studies of stratified turbulent shear
flows, which impose a constant mean shear and stratification in the vertical direction.
The horizontal directions are then regarded as periodic and the vertical direction
shear is periodic. The work by Gerz et al. (1989), Holt et al. (1992), Kaltenbach
et al. (1994), Carnevale et al. (2001) and Jacobitz et al. (1997) belong to this category.
Turbulent flows with mean shear and stratification are typically temporally evolving
and hence do not reach stationary states, except at a certain ‘stationary’ Richardson
number for which the production is balanced by the dissipation. Asymptotic stationary
states can be attained, however, where normalized variables (e.g. ratios of individual
components of energy to total energy) reach constant values after several turnover
periods. Another approach for the study of shear-stratified turbulence uses decaying
simulations. An example is the DNS study of Galmiche et al. (2002), that deals with
non-uniform vertical mean shear and non-uniform stratification, where mean velocity
and density profiles are allowed to evolve with time. In such simulations, however,
the results are sensitive to the generally transient nature of the flow.

While previous numerical studies have made important contributions to the study
of shear-stratified turbulence, they do not reproduce the exact middle atmospheric
situation wherein the turbulence can reach some quasi-equilibrium state. Furthermore,
if homogeneous boundary conditions are used in the vertical direction, there is no
net heat and momentum transfer out of the box. As we demonstrate in § 3, the fluxes
play an important role in redistributing energy in the vertical direction. Without such
a mechanism, the variability of the atmospheric turbulence around the jet cannot be
reproduced. It has been shown in Sutherland & Peltier (1995) that the momentum
flux created from the jet produces internal gravity waves which in turn produce a drag
on the mean velocity. These phenomena cannot be reproduced by conventional shear
periodic numerical experiments, the application of which to atmospheric tropopause
simulations in the presence of a jet stream is thus limited.
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Another class of closely related problems concerns mixing layers. A large number
of studies on mixing layers using theoretical, experimental and numerical approaches
have been documented (e.g. Bell & Mehta 1990; Rogers & Moser 1993). Those
studies are invaluable in understanding self-similar turbulent statistics as well as
the transitional dynamics from the onset of instabilities to full scale turbulence, for
example from the formation of K–H billows to pairing of rollers due to subharmonic
disturbance, and to the formation of the braid regions and streamwise rib vortices
between the rollers, and ensuing mixing in stable environments (Thorpe 1987; Peltier
& Caulfield 2003). Most of the studies on mixing layers, however, are limited to the
transition period. Even though a self-similar state is usually obtained within a certain
time interval, the overall energy budgets are non-stationary at any instance.

Our model of the atmospheric tropopause is characterized by a stratified thin layer
across which the buoyancy frequency jumps approximately by a factor of 2 (figure 2).
In our three-dimensional DNS, the streamwise velocity that characterizes the basic
state of the model jet was given a Gaussian profile, thus producing shear at different
vertical levels characteristic of a jet stream. The governing equations are then solved
using DNS based on a spectral domain technique developed specifically for flows
characterized by non-uniform background shear and stratification (Tse et al. 2001).
Due to inhomogeneity in the vertical direction, periodic boundary conditions are not
used; previous numerical studies have assumed such periodicity. In our simulations,
nonlinear shear and stratification profiles adjust to quasi-stationary values, around
which the potential and kinetic energies fluctuate. Quasi-equilibrium solutions are
obtained following long-time integration of the governing equations. We investigate
the effects of inhomogeneity of shear and stratification, especially those properties
that are distinct from homogeneous stratified shear flows. The robustness of our
results has been verified by DNS with doubled resolution (1024 vertical levels). Thus,
the physical results reported here, in particular those involving ratios of outer scales,
are independent of the numerical resolution.

The next section describes the computational framework for non-homogeneous
stratified shear flows. Section 3 presents the results of numerical simulations and
discussions of various mean quantities and variances at quasi-equilibrium. Vertical
variability of natural length scales (Ozmidov, buoyancy, shear and Ellison) and
Richardson number profiles are analysed in § 4. Turbulent budget equations are
investigated in § 5. Conclusions and suggestions for future work are discussed in § 6.

2. Computational framework for non-homogeneous stratified shear flows
2.1. Description of numerical experiments

The governing equations are the three-dimensional incompressible Navier–Stokes
equations for the velocity U and temperature Θ under the Boussinesq approximation:

∂U

∂t
+ U · ∇U = −∂P

∂x
+ ν∇2U + ΠU, (2.1)

∂V

∂t
+ U · ∇V = −∂P

∂y
+ ν∇2V , (2.2)

∂W

∂t
+ U · ∇W = −∂P

∂z
+ ν∇2W + gβ(Θ − ΘR), (2.3)

∂Θ

∂t
+ U · ∇Θ = κ∇2Θ + ΠΘ, (2.4)

∇ · U =0, (2.5)
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where U = (U, V, W ) are the three components of the velocity in the streamwise,
spanwise and vertical directions (denoted as x,y,z), respectively; ΘR is the constant
reference temperature; P is the pressure; and ν, κ , β and g are the molecular viscosity,
molecular diffusivity, thermal expansion coefficient and gravitational acceleration,
respectively. The horizontally homogeneous terms ΠU and ΠΘ are the vertically
dependent momentum and thermal sources. The two source terms enable a basic
(unstable) jet stream profile and the desired vertically variable Brunt–Väisälä
frequency profile to be obtained. They represent large-scale momentum and thermal
forcing responsible for maintaining the jet.

In this paper, the total instantaneous variables are represented by upper-case letters
(U , V , W , Θ). They are decomposed into two parts: basic state and perturbations. The
variables in the basic state are represented by upper-case letters with subscripts (Ub

and ΘR +Θb), and perturbations by lower-case letters (u, v, w, θ). The perturbation
is further decomposed into two components: a mean (horizontally averaged) part
denoted by 〈 · 〉 and a fluctuating component denoted by primes. Thus, the variables
U , V , W , Θ are decomposed as

U = Ub(z) + u(x, y, z, t) =Ub(z) + 〈u〉(z, t) + u′(x, y, z, t), (2.6)

V = v(x, y, z, t) = 〈v〉(z, t) + v′(x, y, z, t), (2.7)

W = w(x, y, z, t) =w′(x, y, z, t), (2.8)

Θ = ΘR +Θb(z) + θ(x, y, z, t) =ΘR +Θb(z) + 〈θ〉(z, t) + θ ′(x, y, z, t). (2.9)

We have 〈u′〉 = 〈v′〉 = 〈w′〉 =0. The mean (horizontally averaged) values of U and Θ

contain a part from the basic state and a part from the perturbation (e.g. U =Ub + 〈u〉),
while the mean of V satisfies (V = 〈v〉). The pressure can also be decomposed as

P =Pb(z) + p(x, y, z, t) =Pb(z) + 〈p〉(z, t) +p′(x, y, z, t). (2.10)

For the basic state, where the perturbations u, v, w and θ are zero and the fields
depend only on z, the governing equations are reduced to

ΠU + ν
∂2Ub

∂z2
= 0, (2.11)

∂Pb

∂z
= gβΘb, ΠΘ = −κ

∂2Θb

∂z2
. (2.12)

Here ΠU is obtained by assigning to Ub the following Gaussian form:

Ub(z) = Ub(0) exp(−(α1z)
2) exp

(
−

(
Lz

Lz − z

)2
)

exp

(
−

(
Lz

Lz + z

)2
)

e2, (2.13)

where α1 is the stiffness parameter and Lz is the half-depth of the computational
box. The velocity profile Ub(z) is equal to Ub(0) at the centre. The momentum source
ΠU and the thermal source ΠΘ are obtained from (2.11) and (2.12), respectively. The
momentum source is intended to maintain a sustained synoptic/planetary jet stream
in the model (figure 1). The thermal source maintains the mesoscale doubling of the
buoyancy frequency across the tropopause. Thus, we are resolving a microscale box
centred on a synoptic-scale jet stream at the tropopause, for times much shorter than
the time scales of mean jet dynamics. The jet profile for Ub is shown in figure 1(b),
with α =α1 = 16. This profile models the measured wind profile of an atmospheric jet
shown in figure 1(a).
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In (2.12), the buoyancy force due to the background temperature gradient is
balanced by the basic-state pressure gradient, and the thermal source is balanced by
the diffusion of the background temperature. Substituting (2.9), (2.10) and (2.12) into
(2.3)–(2.4), the equations for vertical velocity and temperature can then be expressed as

∂W

∂t
+ U · ∇W = −∂p

∂z
+ gβθ + ν∇2W, (2.14)

∂θ

∂t
+ U · ∇θ = −W

∂Θb

∂z
+ κ∇2θ, (2.15)

where β is the thermal expansion coefficient. Next, letting N2K2(z) = gβ∂Θb(z)/∂z

and ϑ = gβθ/N , where N is a constant (N−1 has the unit of time) and K(z) is
a vertical profile factor we obtain the rescaled vertical velocity and temperature
equations (e.g. Herring & Metais 1989)

∂W

∂t
+ U · ∇W = −∂p

∂z
+ Nϑ + ν∇2W, (2.16)

∂ϑ

∂t
+ U · ∇ϑ = −WNK2 + κ∇2ϑ. (2.17)

The variable ϑ has the unit of length/time (not to be confused with θ , which has
the unit of temperature). In the above equation N and K(z) are related to the usual
Brunt–Väisälä frequency profile N2(z) = (g/Θ)(∂Θ/∂z) as

N 2K2(z) = gβ
∂Θb

∂z
= βΘN2(z). (2.18)

In our simulations, the non-dimensional K(z) profile has the following form:

K(z) = 1 +
1

exp(−α2z) + 1
. (2.19)

The K(z) profile corresponds to a temperature profile which increases monotonically
from the bottom to the tropopause level, experiences a stiff transition at the
tropopause which depends on the stiffness parameter α2, and then further increases,
reaching at the top twice the value at the bottom. This dimensionless profile models
the doubling of the Brunt–Väisälä frequency at the tropopause, as observed in
balloon field measurements by Beland (1993), figure 2 (doubling roughly from
0.01 s−1 to 0.02 s−1). Equations (2.13) and (2.19) introduce two parameters α1 and α2,
which specify the inverse of the external length scales of the system. The first number
α1 controls the amount of shear along the jet edges while the second parameter α2

controls the stiffness in the Brunt–Väisälä profile. In our simulations, the same values
are used for α1 and α2 (α = α1 =α2 = 16). The edges of the jet are then located in the
vicinity of the normalized vertical levels zα ≈ ± 1.

The variables can be non-dimensionalized by choosing a suitable velocity scale
Uα = Ub(0) and length scale Lα . We define Lα = 1/α and z̃ = αz = z/Lα . Hence, in
terms of the rescaled z̃ and with α = 16, the computational box corresponds to
−5.0 × 16 � z̃ � 5.0 × 16. Similarly, we rescale x̃ = αx, ỹ = αy, with 0 � x̃, ỹ � 8π.
The non-dimensionalized equations then become

∂Ũ

∂t̃
+ Ũ · ∇Ũ = −∂P̃

∂x̃
+

1

Re0

∇̃2Ũ + Π̃U , (2.20)

∂Ṽ

∂t̃
+ Ũ · ∇Ṽ = −∂P̃

∂ỹ
+

1

Re0

∇̃2Ṽ , (2.21)



80 K. L. Tse, A. Mahalov, B. Nicolaenko and H. J. S. Fernando

Case Ub(0) Resolution Re0 = Ub/να N

1 4 1282 × 512 2500 0.2
2 4 1282 × 512 2500 1.0
3 4 1282 × 512 2500 0.05
4 10 2562 × 512 6250 0.2
5 20 2562 × 512 12500 0.2
6 20 5122 × 1024 20833 0.2

Table 1. Physical parameters used in simulations with ν = 1 × 10−4, κ = 1.4 × 10−4

(cases 1–5) and ν = 6 × 10−5, κ = 8.6 × 10−5 (case 6). Pr= 0.7 in all cases.

∂W̃

∂t̃
+ Ũ · ∇W̃ = −∂P̃

∂z̃
+

1

Re0

∇̃2W̃ +
1

Fr
ϑ̃, (2.22)

∂ϑ̃

∂t̃
+ Ũ · ∇ϑ̃ = − 1

Fr
W̃K2 +

1

Re0Pr
∇̃2ϑ̃, (2.23)

leaving only three dimensionless parameter groups in the equations: the Froude
number Fr = Uα/NLα , initial Reynolds number Re0 = UαLα/ν and Prandtl number
Pr = ν/κ . Similarly, the source now has the form

Π̃U = − 1

Re0

∂2Ũ b

∂z̃2
, Ũ b(z̃) = exp(−z̃2) exp

((
Lzα

Lzα − z̃

)2
)

exp

((
Lzα

Lzα + z̃

)2
)

e2.

(2.24)

The governing equations (2.1), (2.2), (2.16) and (2.17) are solved using numerical
methods described in § 2.2. The parameters for this problem are κ , ν, Ub(0), N , and
α; their values used in our simulations are listed in table 1. Case 1 is regarded as the
reference case. The viscous and thermal diffusivities are set to 1 × 10−4 and 1.4 × 10−4,
respectively, for cases 1–5 and 6 × 10−5 and 8.6 × 10−5 for case 6, resulting in a Prandtl
number ν/κ of 0.7 in all cases as for air. Case 2 has higher and case 3 has lower
stratification compared to case 1. The dependence on stratification can be studied
through the first three cases. Cases 4, 5 and 6 have higher forcing, as evident from
their respective Reynolds numbers. Cases 4 and 5 are simulated with a resolution
of 2562 × 512 while cases 1–3 have a resolution of 1282 × 512. The largest Reynolds
number simulation in case 6 has the highest resolution of 5122 × 1024.

The vertical gradient of Ub(z) is large in the middle region (except at z = 0)
and correspondingly Rig = (NK(z))2/(dUb/dz)2 is small there. The base jet profile is
linearly unstable for Rig < 0.25. The shear is sufficiently large to overcome the stability
due to stable stratification and the flow develops instabilities and turbulence. Based on
the centreline velocity of the jet at the basic state Ub(0) and α−1, the initial Reynolds
number is given in table 1. Cases 1, 2 and 3 have the same Reynolds number but
different background stratification. Increasing the forcing parameter has the effect
of increasing the Reynolds number (cases 4, 5 and 6). For the quasi-equilibrium
turbulent state we define turbulent length and velocity scales as follows. The length
scale, Ld = q3/ε is based on the turbulent kinetic energy (TKE) dissipation ε and q

(Batchelor 1953):

ε = ν〈sij sij 〉, q2 = 〈u′2 + v
′2 +w

′2〉, (2.25)
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Case 1 2 3 4 5 6

Frd 1.26 0.41 5.21 1.98 2.54 1.11
Red 826 534 798 1392 2392 4016

Table 2. Values of parameter groups at quasi-equilibrium at the vertical level αz = 1.0;
Frd = q/(NeqLd ), Red = qLd/ν are based on the length scale Ld ; Neq is defined in (3.1).

z�

Red

0 2000 4000 6000
–8

–4

0

4

8

Figure 4. The Reynolds number based on the length scale Ld and q for 5122 × 1024
resolution, case 6, Red = qLd/ν.

where sij = 1
2
(∂ui/∂xj + ∂uj/∂xi) is the rate-of-strain tensor (Pope 2000) and ui and xi

(i = 1, 2, 3) correspond to our u, v, w and x, y, z notation respectively. The values of
the turbulent Reynolds number Red and Froude number Frd with this set of scales are
given in table 2 for the vertical level αz =1.0. The scales and the Reynolds number
Red vary with vertical level, being highest near the edges of the jet, and decay rapidly
away from the edges; see figure 4 for case 6 with 512 × 512 × 1024 resolution.

2.2. Numerical methods

In the present study we use a spectral domain decomposition method, which
is particularly suitable for simulation of flows with non-uniform background
stratification and shear. The flow is assumed to be homogeneous only in the horizontal
directions where periodic boundary conditions are used. For each horizontal
wavenumber, the vertical domain is then broken down into several subdomains
(figure 5). Each subdomain is separately mapped to a domain {−1 � z′ � 1}. For
non-overlapping subdomains, there are basically two solution methods: collocation
and variational methods. In the collocation method, the variable (e.g. λ) within each
subdomain j is interpolated as

λj (z′) =

n∑
i =0

c
j
i φi(z

′), −1 � z′ � 1, (2.26)

where n is the order of interpolation, and the functions φi(z
′) are the Lagrange

interpolants. The local coordinate z′ is chosen to be the Gauss–Lobatto–Legendre
point.
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Figure 5. (a) Distribution of collocation points in primary and auxillary subdomains. The
vertical lines separate the subdomains. (b) Distribution of primary subdomain boundaries in
the vertical direction.

The differentiation of variables is carried out by differentiating the interpolants.
An efficient routine for the differentiation exists; e.g. Fornberg (1996). The domain
decomposition method, however, requires patching of subdomain boundaries when
forming the global differentiation matrix. In inverting the second-order differentiation
matrix (e.g. in calculating the pressure Poisson equation), continuity of the first-order
derivative is required as the subdomain boundary condition. This is usually done by
replacing n − 1 rows (corresponding to n − 1 subdomain boundaries) of the global
matrix by the first-order derivative equations. This method, however, may lead to
numerical disturbances at the subdomain boundaries, particularly if the resolution of
the problem is marginal. To overcome this problem, an auxillary set of subdomains
is defined, with each subdomain in the auxillary set straddling the subdomains in
the primary set. The arrangement is shown schematically in figure 5. Another global
differentiation matrix is then formed, and differentiation or integration are carried
out by multiplication or inversion of a combination of these two matrices. When
this method is used in the advection–diffusion equation, exponential convergence of
accuracy is observed for linearly increasing order of interpolation. The method has
been tested using the turbulent channel flow problem, and excellent performance has
been found. Further details on the numerical method are given in Tse et al. (2001).

The time discretization follows the usual pressure projection method, which
separates the time derivatives into three substeps. The nonlinear terms and buoyancy
terms are advanced in the first substep; pressure Poisson equations are then solved
directly and the pressure terms are advanced in the second substep while the
dissipation terms are handled in the third substep. A second-order Adams–Bashforth
scheme is used for the nonlinear terms. The calculation of derivatives involved in the
nonlinear terms is carried out in physical space using a collocation method. The third
substep requires calculating the viscous terms implicitly. A total of eight forward
fast-Fourier transforms (FFT) and four backward FFT are required. The program is
parallelized by the transposition method using the Message Passing Interface (MPI).
In the vertical direction, absorption layers are added to the top and bottom boundaries
to remove the reflection of waves. The computational box (shown in figure 5b) has
a length of π/2 in both horizontal directions and extends from −5.0 to +5.0 in the
vertical direction. Grid resolutions used in the simulations are either 128 × 128 × 512,



Dynamics of shear-stratified turbulence 83

z�

–0.02 –0.01 0 0.01 0.02

–5

0

5

���

Figure 6. Evolution of the mean temperature, 〈ϑ〉, at quasi-equilibrium, case 1.

256 × 256 × 512 or 512 × 512 × 1024 (table 1). There are either 127 (for cases 1–5)
or 255 (for case 6) subdomains in the vertical direction. The interpolation for the
central three subdomains is fifth-order, and fourth-order elsewhere. The total number
of grid points in the vertical is then equal to a power of two, avoiding the situation
where one processor needs to carry an extra plane for computation. The width of the
subdomains between −0.062 to 0.062 is 0.004, and the width gradually increases to
0.2 at the outer regions. The jet stream is located at the centre of the computational
domain. This region requires more resolution due to higher shear (figure 5). The
computations are performed on massively parallel supercomputers at Los Alamos
National Laboratory and the DoD ARL MSRC.

2.3. Quasi-equilibrium state

Long-time integration of the governing equations (2.1)–(2.5) is affected by the presence
of adiabatic invariants for the long-time dynamics. In particular, it has been shown
in Babin, Mahalov & Nicolaenko (1998) that in the asymptotic state (after several
periods of oscillations associated with wave motions; Mahalov, Nicolaenko & Zhou
1998) the horizontally averaged temperature 〈ϑ〉 is a near-adiabatic invariant with
only a small drift in time; this drift is confirmed by our DNS in figure 6. A state
of absolute equilibrium is one where the mean temperature 〈ϑ〉 as well as other
(horizontally) averaged quantities are no longer changing with time. We recall the
mean (horizontally averaged) temperature equation

∂〈ϑ〉
∂t

+
∂〈w′ϑ ′〉

∂z
= κ

∂2〈ϑ〉
∂z2

, (2.27)

and define quasi-equilibrium to be a state where 〈ϑ〉 satisfies (2.27) with a small
but finite time derivative (slow steady drift as in figure 6) and where all other
mean values are quasi-stationary and the integrated statistics of variances show little
fluctuation (< 5%). This is illustrated in figure 7 for a typical case where the vertically
integrated values of velocity variances,

∫
〈u′2〉 dz (I),

∫
〈v ′2〉 dz (II) and

∫
〈w′2〉 dz

(III), temperature variance
∫

〈ϑ ′2〉 dz (IV) and the rate of change of horizontal

velocity variance,
∫

|∂〈u′2〉/∂t | dz (V), are plotted against the large-eddy turnover time
(S−1

b = (max|∂Ub/∂z|)−1 ≈ 0.018). Our range for Sbt is longer than those reported in
typical homogeneous shear flow simulations since we are using the maximum value
of shear at the basic state. All the curves initially overshoot and then settle down to a
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Figure 7. The time evolution of vertically integrated values of 〈u′2〉 (I), 〈v′2〉 (II), 〈w′2〉 (III),

〈ϑ ′2〉 (IV) and |∂〈u′2〉/∂t | (V); 〈·〉 denotes horizontal averaging. Horizontal axis is given in
non-dimensional time Sbt .

relatively constant value. The first stage of evolution corresponds to the onset of initial
shear instabilities. Secondary instabilities then have an effect, and with transition to
fully developed three-dimensional turbulence the variances drop and begin to saturate,
with TKE production balancing the energy sinks. This is evident from the spectra in
the quasi-equilibrium state presented in Tse et al. (2001), which span several decades.
After the velocity variances become quasi-stationary, the horizontally averaged mean
temperature is still evolving, albeit slowly, as shown in figure 6 for case 1. Physically,
quasi-equilibrium states can be obtained if the synoptic-scale driving force has a much
longer time scale (e.g. see figure 3 of Cullen 2002).

3. The mean profiles, variances and covariances
In this section, based on our long-time DNS, we present vertical profiles at

quasi-equilibrium for the mean temperature, three velocity components and the
corresponding variances and covariances. The mean (horizontal-averaged) velocity
in the streamwise direction U = Ub + 〈u〉 at quasi-equilibrium is shown in figure 8 for
the cases from table 1. These plots are time-averaged over one large-eddy turnover
time defined by 2π/(αq). The vertical axis is non-dimensionalized by 1/α and the
velocity is non-dimensionalized by U (0). Hence the normalized values are all equal
to unity at the centre. Cases 1, 2 and 3 are shown in figure 8(a) while cases 4, 5 and
6 are shown in figure 8(b). The profiles for cases 5 and 6 are essentially identical.
The amount of stratification does not have much effect on the width of the mean
flow, which is determined by the profile of the momentum source ΠU . There is a
counterflow away from the central region. Note that the asymmetry generated by the
doubling of the Brunt–Väisälä profile is more prominent in case 2 than in the other
cases. The peak value of U =Ub + 〈u〉 in this case is also larger than in other cases.
In the decaying simulation by Galmiche et al. (2002), an increase of stratification has
been observed to cause transfer of energy from turbulence to the mean.

The mean temperature profile 〈ϑ〉, which is the mean of the perturbation of the basic
profile, is a slowly evolving quantity that can serve as an indicator of a particular
quasi-equilibrium state at that vertical level. It is plotted in figure 9, with values
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Figure 8. Normalized mean (horizontally averaged) velocity in the streamwise direction
U (z)/U (0) where U = Ub + 〈u〉, for cases listed in table 1: (a) cases 1 (solid), 2 (dash) and 3
(dash-dot); (b) cases 4 (solid) , 5 (dash) and 6 (dash-dot).
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Figure 9. Normalized mean (horizontally averaged) temperature, 〈ϑ〉(z)/U (0), in the
quasi-equilibrium state for cases listed in table 1: (a) cases 1 (solid), 2 (dash) and 3 (dash-dot);
(b) cases 4 (solid), 5 (dash) and 6 (dash-dot).

normalized by U (0) (ϑ has the unit of velocity). The values are negative in the upper
domain and positive in the lower domain. As will be seen later in figure 20, the vertical
heat flux is negative in the central region and it is very small elsewhere. As a result,
the temperature decreases at the top and increases at the bottom due to buoyancy
flux crossing the centre. In figure 9 the peaks for case 2 are the largest, followed
by case 1 while case 3 has the smallest peaks. One prominent feature is that, as the
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Figure 10. (a) The square of the Brunt–Väisälä frequency profile, N2
eq , and (b) gradient

Richardson number profiles at quasi-equilibrium from the numerical simulations for cases 1
(solid), 2 (dash) and 3 (dash-dot).

stratification decreases, the peaks move away from the core of the flow. Consider
case 3 for example: 〈ϑ〉 peaks at zα ≈ 5.36 and −4.96, at distances significantly away
from the sides of the jet at zα ≈ ± 1. There are no significant differences in the location
of peaks for cases 4, 5 and 6.

Figure 10(a) shows profiles of the turbulent-mean-state squared Brunt–Väisälä
(buoyancy) frequency. A dramatic decrease in the jet core, through turbulent mixing,
is clearly noticed. A Brunt–Väisälä profile of this kind, with a localized minimum in
the mixing region, is sometimes referred to as possessing a ‘notch’. It is known to
be a mean-state configuration favouring emission of gravity waves from tropospheric
jet streams (Lott, Kelder & Teitelbaum 1992; Sutherland & Peltier 1995). We note
that although the basic-state Brunt–Väisälä profile has only a smooth doubling at the
jet levels, the time-varying mean state in our DNS evolves to a profile having such
a notch configuration. Nastrom & Eaton (1997) found a localized decrease of the
Brunt–Väisälä parameter at the tropopause level in several winter seasonal profiles,
which adds credence to our simulation results (cf. their figure 5b). Vertical profiles
of the gradient Richardson number Rig = N 2

eq/(∂U/∂z)2 at the quasi-equilibrium are
shown in figure 10(b) for cases 1, 2 and 3, where

N2
eq = Nd〈ϑ〉/dz + N 2K2(z) (3.1)

is the normalized Brunt–Väisälä frequency profile at quasi-equilibrium. The gradient
Richardson number Rig profile at quasi-equilibrium is very similar to those obtained
by Bedard et al. (1986) as shown in figure 3(a) and to the profiles for cases 4, 5 and 6
in figure 3(b). Comparing cases 1, 2 and 3, we can see that an increase of stratification
causes the curves of Rig to move closer to the core. On the other hand, an increase
or decrease in the forcing term also changes the vertical position of the Rig curves,
which is clear when we compare cases 1 and 5.

Visualizations of the flow fields are shown in figures 11–14 for a better understanding
of the flow structure. The velocity vectors, fluctuation temperature, spanwise vorticity
and local gradient Richardson number on a typical vertical-plane cross-section (where
the horizontal scale is taken to be αx) are plotted here for cases 1 and 2. As can
be seen in figure 11(a), counterclockwise rollers appear on top and clockwise rollers
appear on the bottom edge of the jet. This agrees with the contour levels of the
spanwise vorticity in figure 12(a). Entraining fluid from above and below the jet
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Figure 11. (a) Instantaneous velocity vectors and (b) temperature fluctuation on a vertical
plane for case 1. Magnitude of velocity is given by arrow length.
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Figure 12. (a) Instantaneous spanwise vorticity and (b) local gradient Richardson number
on a vertical plane for case 1.

generates fingers of hot and cold fluid, as evident from temperature contours shown
in figure 11(b). The temperature fluctuation at the centre is comparatively small.
Figure 12(b) shows the local gradient Richardson number at the same vertical-plane
cross-section. High values are obtained away from the core while values close to the
centre are small. Peaks of temperature variance (see also figure 18) are shifted relative
to peaks of velocity variances shown in figures 15 and 16. These results are consistent
with atmospheric observations of Nastrom et al. (1986).

The fields for case 2 are plotted in figures 13 and 14 (stronger background
stratification compared to case 1). The vortices and the waviness are observed
in the vector projections (figure 13a). The corresponding spanwise vorticity field
shown in figure 14(a) has high-intensity zones concentrated around the centre. The
most significant difference between cases 1 and 2 is the amplitude of temperature
fluctuations, which is intensified in case 2. The maxima of temperature fluctuations in
case 2 are closer to the core; that is zα ≈ 2 instead of zα ≈ 5 in case 1 (cf. figure 18a).
The local gradient Richardson number shown in figure 14(b) is not significantly
different from case 1.
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Figure 14. (a) Instantaneous spanwise vorticity and (b) local gradient Richardson number
on a vertical plane for case 2.

The variances of the streamwise velocity, 〈u′2〉/U (0)2 are shown in figure 15. Cases 1,
3, 4 and 5 have similar magnitudes while case 2 has the smallest normalized variance.
In general, the variances show two peaks located roughly at the edges of the jet, at
zα ≈ ± 0.70 where ∂Ub/∂z is largest. This agrees with observations of Beland (1993)
that the turbulence intensity is highest at the edges of the jet stream. The value of
〈u′2〉/U (0)2 is the lowest in case 2, and decays more rapidly away from the core due to
the higher stratification. In contrast, the values for cases 1 and 3 are similar, suggesting
that stratification in these cases is too low to have any significant effect on velocity
variances. This is also true for cases 4 and 5. The variances of the spanwise velocity
〈v ′2〉/U (0)2 are shown in figure 16. Their vertical profiles exhibit two peaks, but
their magnitudes are generally much smaller than those of corresponding streamwise
components. Vertical velocity variances 〈w′2〉/U (0)2 are presented in figure 17. They
show a single peak at the centre of the jet core. Again, case 2 is significantly smaller
in value than cases 1 and 3, in view of the increased stratification. The magnitudes
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Figure 15. The normalized variances of the streamwise velocity, 〈u′2〉/U (0)2 as a function of
the normalized height: (a) cases 1 (solid), 2 (dash) and 3 (dash-dot); (b) cases 4 (solid) and 5
(dash).
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Figure 16. The normalized variances of the spanwise velocity, 〈v′2〉/U (0)2: (a) cases 1
(solid), 2 (dash) and 3 (dash-dot); (b) cases 4 (solid) and 5 (dash).

for cases 4 and 5 are roughly the same as in cases 1 and 3. The mean velocity profiles
and profiles of 〈w′2〉/U (0)2 agree qualitatively with recent water tank experiments on
stratified and unstratified jets by Webster & Liu (2001). For unstratified jets, they
obtained self-similar profiles for 〈w′2〉/U (0)2 whereas self-similarity was not evident in
stratified jets. The profiles of 〈w′2〉/U (0)2 also agree qualitatively with those measured
by Nastrom & Eaton (2001) in the lower stratosphere from VHF radar observations.

The normalized temperature variances 〈ϑ ′2〉/U (0)2 in figure 18 show a trend
opposite to that of the vertical velocity in that the former peaks while the latter
drops to small values. The asymmetry in all cases is very prominent, a result of the
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Figure 17. The normalized variances of the vertical velocity, 〈w′2〉/U (0)2: (a) cases 1
(solid), 2 (dash) and 3 (dash-dot); (b) cases 4 (solid) and 5 (dash).
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Figure 18. The normalized variances of the temperature, 〈ϑ ′2〉/U (0)2: (a) cases 1 (solid),
2 (dash) and 3 (dash-dot); (b) cases 4 (solid) and 5 (dash).

jump in the Brunt–Väisälä frequency profile at the centre. As stratification decreases,
the temperature fluctuations penetrate deeper into the surrounding fluid, spreading
the peak of temperature variance further. In case 2, the upper peak of 〈ϑ ′2〉/U (0)2 is
located at zα ≈ 2.4, in case 1 at zα ≈ 5 and in case 3 at zα ≈ 8, which are somewhat
further away from the core than the extrema of 〈ϑ〉. The vertical levels of peaks for
〈ϑ ′2〉/U (0)2 tend to vary inversely with the strength of stratification. For cases 4 and
5, the temperature variance peaks roughly at the same vertical levels as in case 1.
However, the magnitude of the peaks decreases as the Reynolds number increases.

The normalized horizontal heat fluxes, 〈u′ϑ ′〉/U (0)2, are plotted in figure 19. They
are negative immediately above the centre and positive below the centre. This is most
prominent in case 2. This is in agreement with the previously discussed figures 11
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Figure 19. The normalized profile of the horizontal heat flux, 〈ϑ ′u′〉/U (0)2: (a) cases 1
(solid), 2 (dash) and 3 (dash-dot); (b) cases 4 (solid) and 5 (dash).
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and 13 where fingers of hot fluid are entrained into the core from above and fingers
of cold fluid from below. Further away from the jet, 〈ϑ ′u′〉 changes its sign again.
This is caused by the counterflow which carries cooler fluid to the top and hotter
fluid to the bottom, resulting in positive and negative secondary peaks above and
below, respectively. The normalized streamwise heat fluxes show strong dependence
on the vertical level. The vertical heat fluxes 〈w′ϑ ′〉/U (0)2 are plotted in figure 20. For
cases 1, 2 and 3, they are all negative, confirming that the heat is moving from the
hotter (lighter) upper domain to the cooler (heavier) lower domain (down-gradient).
Counter-gradient heat flux (〈w′ϑ ′〉 positive) has been observed in others studies only
when the gradient Richardson number is relatively large (Rig ≈ 0.5 − 1.0, Gerz et al.
1989). For case 3, the heat flux is almost zero at the centre, corresponding to the
near-neutral stratification. The peaks of 〈ϑ〉, figure 9 are situated further away in the
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Case 1 Case 2 Case 3 Case 4 Case 5

〈u′2〉/q2 0.4214 0.4442 0.4448 0.5266 0.4293 0.4183 0.3738 0.3774 0.3971 0.3725

〈v′2〉/q2 0.2037 0.2206 0.2207 0.2470 0.1989 0.2428 0.2300 0.2431 0.2221 0.2729

〈w′2〉/q2 0.3750 0.3352 0.3344 0.2264 0.3719 0.3388 0.3962 0.3796 0.3808 0.3546

−〈u′ϑ ′〉/u′
rmsϑ

′
rms 0.0162 0.3704 0.0169 0.5908 0.0275 −0.0260 0.0028 0.3251 −0.026 0.3114

−〈w′ϑ ′〉/w′
rmsϑ

′
rms 0.3553 0.3480 0.3261 0.3740 0.0108 0.0136 0.3351 0.3611 0.3480 0.3120

〈u′w′〉/u′
rmsw

′
rms 0.0041 0.5455 −0.0168 0.5322 0.0086 0.5248 0.0044 0.5207 −0.0173 0.5037

Table 3. Normalized values of variances and covariances at zα = 0 and zα = 1.

vertical than the peaks of 〈w′ϑ ′〉. In figure 20, the profiles of 〈w′ϑ ′〉/U (0)2 for cases 1,
2 and 3 are significantly different. If the profiles are not normalized (not shown here),
case 2 has the largest peak at the core of the flow. When stratification decreases, the
amount of heat flux at the core of the flow decreases, until it drops nearly to zero
for case 3. At the same time, the heat flux at the edges increases and generates two
peaks at zα ≈ 7 and −6.5 in case 3. The doubling of the Brunt–Väisälä profile results
in the asymmetry of the heat flux profiles.

The anisotropy of the velocity components can be observed from table 3, which
shows the normalized values of variances and covariances for several cases at the
vertical levels zα =0 (centre) and zα = 1 (edge region). The total fluctuating kinetic
energy q2/2 in table 3 is defined in (2.25). The rms subscript denotes the square
root of variance (e.g. u′

rms =
√

〈u′2〉, etc). Generally, 〈u′2〉/q2 and 〈w′2〉/q2 together

contribute roughly 80% of the kinetic energy with 〈v ′2〉/q2 contributing the rest. The
contribution from the vertical direction is smaller for higher stratification (case 2).
Furthermore, the anisotropy decreases for cases 4 and 5 where the Reynolds number
is higher. Anisotropy in stably stratified mixing layers has been studied by Smyth &
Moum (2000). They found that the vorticity anisotropy tensor becomes isotropic as
the Reynolds number increases. Velocity has a similar trend, but it is possible that in
real atmospheric situations some degree of anisotropy will be retained (Vinnichenko
1980; Gargett, Osborne & Nasmyth 1984). Recent observations of turbulence around
a winter jet stream using the ‘Egrett’ meteorological research aircraft show that
anisotropy indeed persists at the smallest scale observed (∼ 1 m) (Cote et al. 2003).

4. Variability of length scales and gradient Richardson number
The behaviour of stably stratified turbulent flows can be characterized in terms

of length scales by which the relative magnitude of buoyancy, shear, inertial and
viscous influences are signified. Some commonly used length scales are the shear
length scale Ls , Ellison scale Le, buoyancy scale Lb and Ozmidov scale Lo, defined in
table 4. Relationships between these length scales have been investigated extensively,
for example, in the atmospheric boundary layer by Hunt et al. (1985), through
atmospheric radar observations by Eaton & Nastrom (1998), in ocean shear layers by
Moum (1996), in numerical simulations by Itsweire et al. (1993) and using laboratory
experiments (Rohr et al. 1988; De Silva & Fernando 1992); see Fernando (2002)
for a discussion. The ratios of these length scales usually yield some important
non-dimensional parameters, for example, Rig = L2

s /L
2
b.

Buoyancy forces tend to influence the motion scales that are larger than certain
‘outer’ scales (Ozmidov, buoyancy, Ellison and shear). Scales that are smaller than
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Streamwise Spanwise Vertical Other

Kolmogorov scale, L2
η – – –

(
ν3/ε

)1/2

Shear scale, L2
s 〈u′2〉/(dU/dz)2 – 〈w′2〉/(dU/dz)2 q2/(dU/dz)2

Ellison scale, L2
e – – – 〈θ ′2〉/

(
∂ϑ/∂z

)2

Buoyancy scale, L2
b – – 〈w′2〉/N 2

eq q2/N 2
eq

Ozmidov scale, L2
o – – – ε/N 3

eq

Table 4. Definition of length scales.
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Figure 21. The normalized length scales Lηα, Leα and Loα for (a) case 1 and (b) case 2
(logarithmic scale).

the outer scale but larger than the Kolmogorov scale show active three-dimensional
turbulence. For larger Rig > 1 cases, the Ozmidov scale Lo is regarded as the outer scale
above which the turbulence is significantly affected by buoyancy (cf. Phillips 1972,
1991). The Ellison scale Le indicates the typical vertical distance travelled by fluid
particles before either returning towards their equilibrium level or mixing (Rohr et al.
1988). The ratio Ls/Lb =Ri1/2

g accounts for the relative scales of influence of shear
and buoyancy. If Ls/Lb > 1, then the buoyancy influence occurs at a scale smaller
than the shear scale, and if active turbulence exists, then ε ∼ (w′2)3/2/Lb and hence
Lb ∼ (w′2)1/2/N ∼ (εLb)

1/3/N ∼ Lo indicating that the Ozmidov scale Lo represents the
scale beyond which the turbulent eddies are influenced by stratification (Fernando &
Hunt 1996). In general, however, Lo should be contrasted with the buoyancy scale
Lb at which the fluid parcel displacements (either due to turbulence or waves) are
constrained by buoyancy forces. The Kolmogorov scale Lη characterizes the smallest
scale of active turbulence and thus Lo ∼ Lη implies the complete suppression of
active turbulence by stratification, leaving ‘fossil’ turbulence that mainly consists of
nonlinear waves. Given that both Lb and Le respond to the presence of waves and
turbulence alike, Hunt et al. (1985) have suggested that the ratio Le/Lb, the so-called
temperature fluctuation parameter, is insensitive to the presence of waves, with an
estimated value of Le/Lb = 1.0 ± 0.5. As is evident from the above discussion, for the
weakly stable case of Rig < 1 with intense turbulence, the Ozmidov scale has a limited
significance.

In figure 21(a, b) three normalized (by 1/α) length scales Lo, Le and Lη are
compared for cases 1 and 2, respectively. Note the difference in vertical variability
of different length scales. While Le and Lo peak roughly at the jet core, Lη reaches
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Figure 22. The normalized length scales Lsα, Lbα and Loα for (a) case 1 and (b) case 2
(logarithmic scale).

a minimum there; this scale separation is indicative of active turbulence with strong
mixing, concurrent with low Rig values in the core (figure 10b). The ratio of Lo/Lη

decreases markedly along the jet edges, pointing to the inhibition of turbulent mixing
and fossilization of turbulence at zα ≈ ± 6. Beyond these vertical levels, turbulent
fluctuations (figures 15–18) and the vertical heat flux (figure 20) are drastically reduced.
The scales Le and Lo in the upper domain drop faster than in the lower domain
because of higher stratification. Figure 21(b) is a plot of length scales for case 2, which
is generally similar to case 1. The Kolmogorov scale remains unchanged, but two peaks
of Lo can be seen in the jet shear layers. However, the positions where Lη ≈ Lo and
Lη ≈ Le now occur at a much lower vertical levels zα ≈ ± 3, a signature of decreased
spatial influence of the jet due to increased stratification. These observations are
consistent with the fields shown in figures 11–14. The decades of separation between
Lη and the outer scales in the zone of active turbulence do guarantee the effective
resolution of all outer scales. For case 2, figure 21(b), Le becomes greater than Lo

for zα > 2 (the ratio Le/Lo crosses unity at zα ≈ 2); from figure 10(b) these are also
the vertical levels where Rig > 0.25, with pronounced temperature fluctuations and
very patchy turbulence in that region. This is in general agreement with figure 10 of
Schumann & Gerz (1995) who have plotted ratios of Le/Lo vs. Richardson number
and observed Le/Lo < 1 for Rig small, and Le/Lo ≈ 1 at Rig ≈ 0.25 (in the context of
uniform linear vertical shear and stratification).

Figure 22(a, b) shows the variations of Lo, Lb and Ls for cases 1 and 2, respectively.
In figure 22(a), within the jet core |zα| < 2 (except at the centre) Ls � Lb, indicating
a low Rig(� 1), conditions prone for instabilities and turbulence. In the core Lo 	 Ls

and Lo ≈ Lb indicating that turbulence in this region is active and intense. Note that
Ls <Lb implies that the vertical fluid parcel displacements are sufficiently large to be
deformed by the mean shear, promoting the interaction between Reynolds stresses
and mean shear to yield sustained turbulence in the core (|zα| < 2), which is clear
from figures 15–19. In the highly stratified case 2 (figure 22b), Lo becomes smaller
than Lb in the core, but both of them remain larger than Ls .

Since Rig is small (< 0.25) in the jet core (except at the centre zα = 0), the
turbulence therein is intense and the temperature is well mixed, leading to low
temperature fluctuation levels (figures 3b, 11b, 18). In the higher-Rig region where
buoyancy-dominated turbulence prevails, temperature fluctuations become maximum,
thus providing conditions for higher optical turbulence. This is a region of interest
where the length scale ratio Lo/Lb < 1 and where significant wave activity is expected
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Figure 23. Ratio Le/Lb for (a) cases 1, 2, 4 and 5 and (b) cases 4, 5 and 6.

(figure 24a, below). Therein the fluctuations are large, but there is not enough
turbulent dissipation, pointing to the wave activity. Detailed energy budgets (see § 5,
figures 25 and 26) show that in this region the shear production is vanishing and
the energy is received via transfer from the jet core region. However, the energy
deposited in this region by the pressure–velocity term is much smaller (and sometime
negative) than that gained by the nonlinear terms, and hence the wave activity
appears to be dominated by nonlinear waves. These results are in agreement with
the laboratory experiments of Sutherland & Linden (1998) who found generation of
large-amplitude internal waves in strongly stratified regions abutting weakly stratified
turbulent regions. Given that the wave energy does not propagate beyond |zα| ≈ 6,
these nonlinear waves are expected to break and cause intermittent turbulent patches
in the region 2 < |zα| < 6, which is consistent with low local Rig regions of figures 12(b)
and 14(b). Such breaking events can sustain some heat flux (as shown in figures 19
and 20) in this layer while maintaining significant temperature fluctuations.

At the edges of the jet (case 1, figure 22a), in a thin layer around |zα| ≈ 1.8,
we have Ls >Lo, Lb indicating that turbulence production by shear and Reynolds
stress interaction is impeded. Rig in this region is large (figure 3b) and hence active
turbulence is possible when Rig locally and intermittently drops below a critical value.
Figures 11–14 show that indeed the turbulence is intermittent at the jet edges. At larger
distances from the jet centre, 2.2 < |zα| < 4, Lb ∼ Ls , indicating marginal conditions
for the maintenance of stratified turbulence; figure 12 shows that turbulence in this
region is very patchy. Also, pronounced temperature fluctuations in this region (with
Le >Lo for case 2) points to possible wave activity. For |zα| > 4, the scales Lo and
Lb are markedly smaller than Ls , confirming the lack of sustained turbulence. This is
generally consistent with figures 11–14 and velocity variances shown in figures 15–17.

Other length scale ratios are also of interest. As stated above Hunt et al. (1985)
predicted Le/Lb of unity in stable atmospheric boundary layers dominated by waves
and turbulence, and found a ratio of about 0.8 in their field measurements. The ratios
of Le/Lb in our DNS for cases 1, 2, 4 and 5 are plotted in figure 23(a). The ratio
is smallest around the centre of the jet and increase at the edges. It drops to 0.1
at the centre for case 1. In the core, Le/Lb for case 2 (with strong stratification)
is higher (≈ 0.25) than that of case 1 indicating that turbulence is more buoyancy
influenced. At the centre, the ratios for cases 4 and 5 are even smaller than for case 1.
For all cases, the ratios increase close to unity away from the core, indicating the



96 K. L. Tse, A. Mahalov, B. Nicolaenko and H. J. S. Fernando

z�

(a)

Lo/Lb

–8

–4

0

4

8

Case 5

Case 4
Case 1Case 2

(b)

Case 5Case 4Case 1Case 2

0 0.5 1.0 1.5 2.0 2.5 3.0
–8

–4

0

4

8

0 4 8 12 16           2 0

Frt

Figure 24. (a) Ratio Lo/Lb for cases 1, 2, 4 and 5. (b) The turbulent Froude number,
Frt = (Lo/Le)

2/3 for cases 1, 2, 4 and 5.

increasing importance of wave–turbulence activities at such vertical levels. In case 2,
the ratio approaches a peak value of unity at around zα ≈ ± 4, while for cases 1,
4 and 5, the peaks of Le/Lb are observed at zα ≈ ± 6. From figure 18, these peaks
approximately correspond to the observed peaks of 〈θ ′2〉 for both cases 1 and 2.
Higher stratification pushes the vertical peak levels of the ratio closer to the core;
such peaks are signatures of zones of stratified turbulence. It should be noted that
the usual techniques of the phase spectra of vertical velocity and temperature, which
show a phase angle of 90◦ for linear internal waves (Stewart 1969), and ‘penetration
condition’ used by Sutherland & Peltier (1993, 1995) are not suitable for the nonlinear
waves emanating from the highly three-dimensional flow configuration used here.

Figure 24(a) shows the ratio Lo/Lb, which is an indicator of the levels of turbulence
and waves; when Lo/Lb < 1, the wave activity is considered dominant over turbulence
and vice versa. Note how this ratio changes over the vertical spread of the jet. The
value of Lo/Lb ∼ 1 observed outside the jet core in the shear layer is roughly the same
as that measured by Hebert et al. (1992) in a turbulent patch in the Pacific equatorial
(jet-like) undercurrent (see also Moum 1996). The ratio (Lo/Le)

2/3 is sometimes called
the turbulent Froude number, Frt and is an alternative to the bulk Richardson
number (Shih et al. 2000). Frt for cases 1, 2, 4 and 5 is plotted in figure 24(b). The
curves are bell shaped, with cases 4 and 5 having the largest values, followed by
case 1 and then case 2. The values at the core are all larger than unity, but Frt

drops to less than unity in regions where the stratification is dominant. In laboratory
grid-generated salt-stratified turbulence, Rohr et al. (1988) have measured the ratio
Le/Lo from which the corresponding turbulent Froude numbers Frt can be deduced.
For N = 0.961 s−1, they obtain values for Le/Lo from 0.1 to 1.8 as the downstream
position increases, which correspond to (Lo/Le)

2/3 values of 4.6 to 0.68. The latter
values are in the same range as those in figure 24(b).

5. Budgets
Budget terms were computed in the quasi-equilibrium state in order to characterize

turbulent transport processes occurring at various vertical levels. Our budget equations
presented in this section are based on the decomposition of velocity, temperature and
pressure fields into the mean (horizontally averaged) and fluctuating components u′, v′,
w′, θ ′ and p′, according to (2.6)–(2.10). The budget equations (5.1)–(5.4) are obtained
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after substitution of the decomposition (2.6)–(2.10) into the governing equations and
performing operations of horizontal averaging 〈 〉; see Stull (1988). We report the
budget terms of 〈u′2〉, 〈v ′2〉, 〈w′2〉 and 〈ϑ ′2〉 for the highly stratified case 2.

The budget equation for 〈u′2〉 is

∂

∂t
〈u′2〉 = I〈u′2〉 + II〈u′2〉 + III〈u′2〉 + IV〈u′2〉;

I〈u′2〉 = −2ν〈∇u′ · ∇u′〉, I I〈u′2〉 = 2

〈
p′ ∂u′

∂x

〉
,

I II〈u′2〉 =
∂

∂z

(
ν

∂

∂z
(〈u′2〉) − 〈w′u

′2〉
)

, IV〈u′2〉 = −2〈u′w′〉 ∂

∂z
U.




(5.1)

The budget terms are normalized by the quantity U (0)3α. The normalized terms for
〈u′2〉 are plotted in figure 25(a) for the strongly stratified case 2. The only source term
is the shear production (IV〈u′2〉). It has two peaks, located on either side of the model

jet stream, in agreement with the graph of 〈u′2〉 in figure 15. The energy produced
is either dissipated or transferred to other components through (I〈u′2〉) and (II〈u′2〉)
terms, respectively. The pressure term consists of two peaks directly opposite to the
peaks of the production terms, transferring energy from the streamwise direction to
the spanwise and vertical directions. The dissipation term has the largest values at
the centre, and it decreases away from the centre. The transport term (III〈u′2〉) moves
energy from the peaks to the centre and a lesser amount to the outer edges of the jet.

The budget equation for the spanwise velocity is

∂

∂t
〈v ′2〉 = I〈v′2〉 + II〈v′2〉 + III〈v′2〉 + IV〈v′2〉;

I〈v′2〉 = −2ν〈∇v′ · ∇v′〉, I I〈v′2〉 = 2

〈
p′ ∂v′

∂y

〉
,

I II〈v′2〉 =
∂

∂z

(
ν

∂

∂z
(〈v ′2〉) − 〈w′(v

′2)〉
)

, IV〈v′2〉 = −2〈v′w′〉 ∂

∂z
V ,




(5.2)

which are shown in figure 25(b). The source is the pressure term (II〈v′2〉) which
transfers energy from the streamwise to the spanwise direction. The dissipation term
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(I〈v′2〉), in contrast to the streamwise component, has two side peaks. The transport
term (III〈v′2〉) moves energy from each side to the centre and away from the jet. The
shear production term IV〈v′2〉 in the spanwise direction is small compared to the other
terms.

The budget equation for the vertical velocity is

∂

∂t
〈w′2〉 = I〈w′2〉 + II〈w′2〉 + III〈w′2〉 + IV〈w′2〉;

I〈w′2〉 = −2ν〈∇w′ · ∇w′〉, I I〈w′2〉 = 2

〈
p′ ∂

∂z
w′

〉
,

I II〈w′2〉 =
∂

∂z

(
ν

∂

∂z
〈w′2〉 − 〈w′3〉 − 2〈p′w′〉

)
, IV〈w′2〉 = 2N〈w′ϑ ′〉,




(5.3)

which are shown in figure 26(a). The pressure redistribution term (II〈w′2〉) extracts
energy from the streamwise direction, and this energy is either dissipated (I〈w′2〉) or
converted to potential energy through the buoyancy term (IV〈w′2〉). The dissipation
term here has magnitude similar to that in the spanwise direction; but this term is
now dominant at the centre. The transport term (III〈w′2〉) plays a more significant
role than in the spanwise direction, in that it transports energy from the jet shear
layer area to the outer region (which may be responsible for the intermittent wave
breaking activity seen in figures 13 and 14). The buoyancy term is negative and heat
flux is thus down gradient (from hot to cold). No counter-gradient heat flux was
observed from the equilibrium statistics (figure 20).

The budget equation for the temperature is

∂

∂t
〈ϑ ′2〉 = I〈ϑ ′2〉 + II〈ϑ ′2〉 + III〈ϑ ′2〉,

I〈ϑ ′2〉 = −2κ〈∇ϑ ′ · ∇ϑ ′〉,

I I〈ϑ ′2〉 = −2〈w′ϑ ′〉
(

NK2 +
∂

∂z
〈ϑ〉

)
= −2〈w′ϑ ′〉

N2
eq

N
,

III〈ϑ ′2〉 =
∂

∂z

(
κ

∂

∂z
〈ϑ ′2〉 − 〈w′ϑ ′2〉

)
,




(5.4)
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Figure 27. (a) Normalized shear production; (b) normalized dissipation; (c) shear production
over dissipation and (d) growth parameter for cases 1 (solid), 2 (dash) and 3 (dash-dot). Curves
for cases 1 and 3 are nearly identical.

which are shown in figure 26(b). The gradient production term (II〈ϑ ′2〉) is the only
source term. It has a peak at about zα ≈ 2. The dissipation term (I〈ϑ ′2〉) has roughly
the same shape as the production term but, of course, with the opposite sign. This
may explain why counter-gradient fluxes are not observed in figure 26(a); temperature
anomalies dissipate in the generation region, without producing restratification effects
that would lead to counter-gradient fluxes. The transport term (III〈ϑ ′2〉) is relatively
small.

The normalized shear production (IV〈u′2〉) in the streamwise direction for cases 1, 2
and 3 is shown in figure 27(a). Cases 1 and 3 have nearly identical shear production.
Case 2, which is more stably stratified, has smaller shear production at each vertical
level compared to cases 1 and 3. Thus, the normalized shear production decreases with
increasing stratification in our flows. This is consistent with the conclusion in Holt
et al. (1992) that stratification does not directly reduce the growth of q2 (i.e. is not a
kinetic energy sink), but it indirectly suppresses the shear production (see also Rohr
et al. 1988). The normalized total dissipation (I〈u′2〉 + I〈v′2〉 + I〈w′2〉) for the three cases
is shown in figure 27(b). The dissipation for case 2 decreases following the decrease in
production. The ratio of production to dissipation is shown in figure 27(c). The three
curves nearly collapse into one, suggesting that production and dissipation maintain
the same ratio regardless of stratification. However, the ratio changes with zα and
peaks at the edges of the jet, where shearing is maximum, zα ≈ 1. Surrounding the
jet, the production and dissipation are not at equilibrium and the transport must be
taken into account. Another relevant quantity is the growth parameter F as defined
in Holt et al. (1992):

F =
production − buoyancy

dissipation
=

∣∣IV〈u′2〉
∣∣ −

∣∣IV〈w′2〉
∣∣∣∣I〈u′2〉

∣∣ +
∣∣I〈v′2〉

∣∣ +
∣∣I〈w′2〉

∣∣ . (5.5)

The dependence of F on zα is shown in figure 27(d). It varies roughly between 0
and 2.5 depending on the vertical level. We note that F is roughly equal to unity in
homogeneous simulations at a critical Richardson number, e.g. Holt et al. (1992), as
well as in laboratory experiments, e.g. Strang & Fernando (2001). The departure from
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unity in the present simulations suggests that the role of TKE transport is significant
at some vertical levels.

6. Conclusions
Three-dimensional quasi-equilibrium dynamics of shear-stratified turbulence in a

model tropospheric jet was studied using DNS. Within the jet core, the Richardson
number is low, the Ozmidov scale is high compared to shear scales, the turbulent
energy production peaks and the turbulence is sustained; the Ozmidov scale has
nearly three decades of separation from the Kolmogorov scale. The Richardson
number increases beyond the jet shear layers in such a way that the shear length scale
exceeds the buoyancy scale, thus impeding sustained energy transfer to turbulence
by the mean flow. The turbulence in this region is patchy, in agreement with the
observation of Nastrom & Eaton (2001). Beyond the edges of the jet are regions with
moderate Richardson number characterized by small Ozmidov-to-buoyancy-scale
ratio, indicating the presence of stably stratified turbulence; the shear production
rate therein is vanishingly small and the energy supply to this region occurs via
propagating nonlinear gravity waves (the nonlinear transport term in the energy
budget exceeds the pressure transport term). Our DNS further show that with
decreasing background stratification, the regions of enhanced nonlinear wave activities
separate away vertically from the levels of peak shear production. These findings are
consistent with the observations made in atmospheric jet streams (Bedard et al. 1986;
Dalaudier et al. 1994). This is also in agreement with the theoretical and numerical
studies of Sutherland & Peltier (1993, 1995), although their studies dealt with two-
dimensional decaying jets and excitation of internal waves by such jets. Theoretical
analysis of stratified shear flows has further established that propagating wave modes
are forced at the shear layers; this shear instability then supports wave radiation
when the density stratification outside the shear layer is sufficiently large (Lott et al.
1992); this is borne out by the present simulations.

Our simulations were performed with lower Reynolds numbers than in the
atmosphere. Nevertheless, certain important parameters of computed turbulent
fields are not only in qualitative but also in quantitative agreement with observed
geophysical flows. For example, computed ratios and variability of turbulent outer
length scales (Ozmidov, buoyancy, shear and Ellison) are broadly consistent with
the observational data presented in Bedard et al. (1986), Eaton & Nastrom (1998),
Nastrom et al. (1986), Hunt et al. (1985) and Hebert et al. (1992). The ratios of
outer length scales are found to be in agreement with observations. These ratios do
not change appreciably with increasing Reynolds number and they saturate with
increasing numerical resolution. This is demonstrated in figure 23(b) where the ratio
Le/Lb is plotted for cases 4, 5 and 6. Remarkably, the curves show little variation,
and saturate with increased resolution; vertical resolution doubles from cases 4 and 5
(512 vertical levels) to case 6 (1024 vertical levels). This guarantees that our resolution
of the outer scales is grid independent and physically significant.

Descriptions of non-homogeneous turbulence and especially turbulence closure
models in stratospheric layers require parameterizations and scaling laws for the
length scales. As there are a number of different natural length scales for non-
uniformly stratified jets, it is not clear, without additional theoretical arguments,
numerical or experimental data, which scales are appropriate for parameterization
of multiple branches in the scaling of flux Richardson number with Rig and other
turbulent quantities for non-uniformly stratified tropopausal turbulence generated by
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jet streams (Joseph et al. 2003). Having established a rigorous method to realize and
simulate non-homogeneous stratified shear flows in the vicinity of the tropopause and
identified key dynamical processes at work through energy budgets and length-scale
ratio computations, in our future work we will investigate the parameterizations
for various turbulence statistics in the context of non-homogeneous tropopausal
turbulence.
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